# [solution] Four Equidistant Points on a Grid solution codechef

Four Equidistant Points on a Gridsolution codechef – The manhattan distance between two points P1(x1,y1)P1(x1,y1) and P2(x2,y2)P2(x2,y2) is given by d(P1,P2)=|x2x1|+|y2y1|d(P1,P2)=|x2−x1|+|y2−y1|.

In other words, manhattan distance is the minimum number of moves required to reach P2P2 from P1P1 if, in each move, you are allowed to travel one unit along the XX-axis or one unit along the YY-axis.

# Four Equidistant Points on a Grid solution codechef

You are given an integer DD. Find four points (P1,P2,P3,P4)(P1,P2,P3,P4) with integer coordinates, such that:

• The absolute value of both XX and YY coordinates of all points is at most 109109.
• The manhattan distance between any pair of points is DD . More formally, d(Pi,Pj)=Dd(Pi,Pj)=D for all 1i<j41≤i<j≤4.

If such set of points do not exist, print -1. If there are multiple solutions, you may print any.

Note: It is guaranteed that whenever there exists a solution, there exists one in which all points have coordinates with absolute values not more than 109109.

### Input Format

• The first line contains a single integer, DD – as per the problem statement.

## Four Equidistant Points on a Grid solution codechef

• If there is no solution, print in a single line the integer -1.
• Otherwise print 44 lines. The ithith line, should contain two space separated integers, XiYiXiYi, the coordinates of the point PiPi, such that 0|Xi|,|Yi|1090≤|Xi|,|Yi|≤109.

### Constraints

• 1D1051≤D≤105

Subtask #1 (100 points): original constraints

### Sample Input 1

2


### Four Equidistant Points on a Grid solution codechef

0 1
1 2
2 3
3 4


### Four Equidistant Points on a Grid Explanation

The following sample output for this testcase is not correct, but is only provided to clarify the output format

The points in the solution are P1(0,1),P2(1,2),P3(2,3)P1(0,1),P2(1,2),P3(2,3) and P4(3,4)P4(3,4)d(P1,P2)=|01|+|12|=2d(P1,P2)=|0−1|+|1−2|=2 but d(P1,P3)=|02|+|13|=4d(P1,P3)=|0−2|+|1−3|=4. As d(P1,P2)d(P1,P3)d(P1,P2)≠d(P1,P3), the solution is incorrect.

A correct solution will satisfy d(P1,P2)=d(P1,P3)=d(P1,P4)=d(P2,P3)=d(P2,P4)=d(P3,P4)d(P1,P2)=d(P1,P3)=d(P1,P4)=d(P2,P3)=d(P2,P4)=d(P3,P4).

A correct sample output is not provided so as to not reveal any hints about the solution.

### Sample Input 2

1


### Sample Output 2

-1


### Explanation

You may verify that for D=1D=1, there are no set of points P1,P2,P3,P4P1,P2,P3,P4 as per the problem statement. This output is correct.