Beautiful Array solution codechef – You’re given an array A of N integers. You need to find the minimum cost of creating another array B of N integers with the following properties
Table of Contents
[Solution] Beautiful Array solution codechef
- B_i \ge 0 for each 1 \leq i \leq N
- The GCD of adjacent elements of B is equal to 1, i.e, \gcd(B_i, B_{i+1}) = 1 for each 1 \leq i \lt N
The cost of creating B is defined as follows:
Find the minimum possible cost to create the array B. Since the answer can be huge print it modulo 10^9+7
Note: You need to minimize the value of total cost of creating the array B, and then print this minimum value modulo 10^9 + 7. For example, suppose there is a way to create the required B with a cost of 500, and another way to do it with a cost of 10^9 + 7 (which is 0 \pmod {10^9 + 7}). The output in this case would be 500 and not 0.
Input Format
- The first line of input will contain a single integer T, denoting the number of test cases.
- The first line of each test case contains an integer N – the length of the array A
- The second line of each test case contains N space-separated integers A_1,A_2,\ldots,A_N
Output Format
For each test case, output on a new line the minimum cost of creating the array B, modulo 10^9 + 7.
Beautiful Array solution codechef
- 1 \leq T \leq 150
- 1 \leq N \leq 10^4
- 1 \leq A_i \leq 10^6
- The sum of N over all test cases won’t exceed 10^4.
Sample 1:
3 3 15 16 19 2 5 10 7 9 15 7 19 10 7 1
3 3 8
Beautiful Array solution codechef Explanation
Test case 1: The given input already satisfies all the conditions, hence we can take B = A with a cost of 2^0 + 2^0 + 2^0 = 3.
Test case 2: One optimal way is to choose B as [ 5, 11 ], with a cost of 2^0 + 2^1 = 3.